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Abstract. We study the geometrical properties of the domain structure that results when a
random Ising ferromagnet is quenched to zero temperature. We define a novel connectivity
transition between like spins in the frozen configuration, and show that it is in a new universality
class, distinct from that of random percolation. The scaling is robust and independent of model
details. The relevance of this transition to spinodal decomposition is discussed.

This letter builds on three well known themes but in a new non-equilibrium context.
Percolation [1] and phase separation [2] are two widely studied and well understood
problems in statistical mechanics. The former deals with the issue of geometrical
connectivity [3] and finds applications in a variety of situations including transport in random
composites [4], nonlinear flow on rough surfaces [5], fracture [6] and dilute magnets [7].
At the connectivity threshold, one obtains scale-invariant behaviour characterized by critical
exponents with scaling relations between them. Furthermore, the exponents are universal
and do not depend on microscopic details such as the inclusion of next-nearest-neighbour
connectivity or the nature of the lattice. The second, phase separation, is most simply
illustrated by considering an Ising ferromagnet (which is in the same equilibrium universality
class as a binary alloy or a binary mixture of fluids) with a random initial condition quenched
to a temperature below the critical point. The spin configuration evolves with time in such a
way as to reach a state of minimum free energy—in a disordered magnet at zero temperature,
the system attempts to reach its ground state but may not succeed in doing so because of
the existence of local minima in the energy landscape in which it may get caught [8]. The
third theme is a general principle in equilibrium statistical mechanics enunciated by Berker
and others [9] which states that symmetry-breaking first-order transitions in two dimensions
are converted to second-order transitions even by an infinitesimal bond randomness [10].

In this letter we combine ideas from percolation and phase separation to define a
dynamical version of the site percolation problem. We investigate the geometrical properties
of the frozen domain structure that results when a disordered ferromagnet is quenched to
zero temperature. One can define a connectivity transition between clusters of like spins in
the frozen state, as the fraction of up spins, in the initial condition, is varied. Surprisingly,
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Figure 1. The fraction of percolating samples,RL(p), on a square lattice as a function ofp
and for different values ofL. The intersection of the curves gives the percolation threshold
pc = 0.5020± 0.0003. The system sizes are: (◦) L = 32, (�) L = 64, (♦) L = 128 and (M)
L = 256.

in 2D, the critical threshold is found to be exceedingly close to1
2, i.e. a symmetric quench,

and the transition is shown to be in a different universality class than random percolation.
The new critical exponents are robust and insensitive to model details. Our findings raise
questions about some of the underlying assumptions of scaling theories of phase separation
in disordered systems.

Consider an Ising ferromagnet with a random initial condition in which a fractionp of
the spins, say, is up and the rest point down. Ordinary random percolation would consist
of studying the connectivity threshold of the up spins on changingp. We now perform a
quench to zero temperature using single-spin-flip Glauber dynamics. A spin is chosen at
random and flipped only if the energy of the system is not increased. This procedure is
repeated until every spin is aligned with its local field; the system is then in a local energy
minimum. As we varyp (measured in the initial state before quenching), each time starting
from a new random initial condition, we seek a threshold value corresponding to the onset
of connectivity of the up spins in the configuration obtained after the quench dynamics has
ceased.

For a ferromagnet with uniform nearest-neighbour exchange, the above procedure gives
rise to a ‘first-order’ transition atp = 1

2. The system is able to reach one or the other
of its two fully aligned ground states depending on whetherp < 1

2 or p > 1
2. Thus, the

percolation probability is strictly either 0 or 1. However, if bond randomness is introduced
into the model, the ground state is not reached and the system remains in a metastable



Letter to the Editor L715

Figure 2. Finite-size collapse forRL(p) on a triangular lattice withpc = 1
2 and the exponent

ν = 1.41. System sizes are: (�) L = 64, (♦) L = 128 and (M) L = 256.

configuration comprising interpenetrating clusters of up and down spins. In analogy with
the Berker prediction [9], the connectivity transition upon varyingp becomes continuous.
Of course, this is only a loose analogy because here the final states are not sampled according
to an equilibrium probability distribution and thus the arguments of [9] do not hold in a
straightforward manner.

Our analysis of this transition is based on a finite-size scaling [11] study of the frozen
spin configurations in a random bond Ising ferromagnet, with couplings chosen from a
uniform distribution between 0 and 1. We shall focus on determining the connectivity
threshold,pc, and the exponentsν, β and γ which, in an infinite system, characterize
the singular behaviour of the correlation length,ξ , the order parameter,P∞, and the
susceptibility,χ∞ [1]:

ξ ∼ (p − pc)−ν P∞ ∼ (p − pc)β χ∞ ∼ (p − pc)−γ . (1)

We defineRL(p) to be the probability of finding a spanning cluster in a system of size L.
As characteristic of critical phenomena and standard percolation,RL(p) has a scaling form

RL(p) = f [(p − pc)L 1
ν ] (2)

which is the consequence of there being a single dominant length scale which diverges at
pc. Plots ofRL(p) againstp for a square lattice withL ranging from 32 to 256 are shown
in figure 1. These curves were calculated numerically by averaging over up to 106 different
realizations of the frozen configurations, for a range of values ofp. The crossing point
accurately determines the percolation thresholdpc = 0.5020± 0.0003 which is very close,
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Figure 3. Collapse of the order parameterPL(p) for a triangular lattice withpc = 1
2 . The

exponents areν = 1.41 andβ = 0.155. The linear dimensionsL are: (�) L = 64, (♦) L = 128,
(M) L = 256. The inset shows a log–log plot ofPL(p) at p = pc as a function ofL, giving
β
ν
= 0.109.

but demonstrably different, from1
2. We have repeated the above analysis for spins on a

square lattice with both nearest- and next-nearest-neighbour couplings and connectivity. In
this case we findpc = 0.498± 0.001, again close to12.

We note that for the triangular latticepc = 1
2 exactly. Indeed the percolation threshold

in the quenched state,pc, satisfies 1− prc 6 pc 6 prc , whereprc > 1
2 is the threshold for

random percolation (regular site percolation). This follows from the observation that when
p > prc , the dynamics do not destroy the connectivity implying thatpc 6 prc . Likewise,
whenp < 1− prc , the dynamics do not break the connectivity of the down spins so that
pc > 1− prc . For the triangular latticeprc = 1

2 and thereforepc is also 1
2.

Oncepc has been determined, the critical exponentν can be estimated from a scaling
collapse of the full set of data. We will present results for the triangular lattice wherepc
is known exactly. The best collapse ofRL(p) is shown in figure 2, giving an exponent
ν = 1.41± 0.02. Note that this is different from the value for random percolation,ν = 4

3
[12]. We have verified that our method of analysis reproduces this exact value in the random
case without dynamics where we findν = 1.33± 0.03.

The order-parameter exponentβ can be determined in a similar way by considering
the scaling behaviour ofPL(p), the probability that a randomly chosen spin belongs to the
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Figure 4. Collapse of the susceptibilityχL(p) for a triangular lattice withpc = 1
2 . The

exponents areν = 1.41 andγ = 2.58. The linear dimensionsL are: (�) L = 64, (♦) L = 128,
(M) L = 256. The inset shows a log–log plot ofχL(p) at p = pc as a function ofL, giving
γ
ν
= 1.85.

infinite cluster. It can be written in the scaling form

PL(p) = L−
β

ν g[(p − pc)L 1
ν ] (3)

and results for the optimal scaling collapse are shown in figure 3. We findβ = 0.155±0.01
with ν = 1.41 as determined above. The inset is a log–log plot ofPL(p) at p = pc as a
function ofL, which should decay asL−

β

ν from (3). We observe a linear dependence for
systems of size up toL = 512 which givesβ

ν
= 0.109± 0.002. This is consistent with

the exponent values determined from the data collapse and, furthermore, the data shows no
deviation from simple linear behaviour. The measured value ofβ is also different from that
of random percolation (β = 5

36).
In addition, we have determined the susceptibility exponentγ , which, in standard

percolation theory, is related toν andβ through the hyperscaling relation [1]

dν = 2β + γ (4)

whered is the spatial dimension. The susceptibilityχL(p) is defined by the second moment
of the cluster size distribution, excluding the spanning cluster. It has a scaling form

χL(p) = L
γ

ν h[(p − pc)L 1
ν ] (5)
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Figure 5. An attempt at a scaling collapse of the susceptibilityχL(p) for a triangular lattice
with pc = 1

2 and the exponents taking their standard percolation values,ν = 4
3 and γ = 43

18.
The linear dimensionsL are: (�) L = 64, (♦) L = 128, (M) L = 256.

and diverges atpc in the thermodynamic limit. Figure 4 shows a collapse ofχL(p) with
the best estimate ofγ = 2.58± 0.03, with ν = 1.41. The inset is a log–log plot ofχL(pc)
againstL, from which we determineγ

ν
= 1.85± 0.02. This is again consistent with the

scaling collapse. The value ofγ is also different from that of standard percolation,γ = 43
18.

However, it is consistent with the hyperscaling relation, within statistical errors, whenν

andβ take their new values. These results suggest that the dynamical percolation transition
studied here is in a new universality class. Indeed, we have tried the above scaling analysis
with the exponents taking their values for standard percolation. Figure 5 shows an attempt
to collapse the susceptibility data usingν = 4

3, γ = 43
18. The quality of the collapse is much

lower than that with the new exponents, as shown in figure 4.
As a test of the robustness of this scaling behaviour, we have considered the effects of

changing the microscopic details of the system. In particular, we have repeated the above
scaling analysis for Ising spins on a square lattice with nearest-neighbour interactions, and on
a square lattice with both nearest- and next-nearest-neighbour interactions and connectivity.
In all cases we find values of the critical exponents which are the same as those determined
from the triangular lattice, and different from those of standard percolation.

Our findings in the context of a percolation transition are also of importance to the
problem of phase ordering in disordered systems. It is well known that in a random Ising
ferromagnet at a non-zero temperature, the characteristic domain size grows logarithmically



Letter to the Editor L719

with time due to thermally activated motion of the interfaces. However, there is an apparent
discrepancy between the predictions of scaling theory [14], which assumes local equilibrium,
and that of numerical simulations [8]. At very early times after a quench the spins will reach
the states sampled in our simulations. Thus, for a symmetric quench, the system will be
extremely close to the percolation critical point. One would then expect that, in the presence
of thermal fluctuations, non-trivial dynamical scaling could result. A further consequence
of a quench to the percolation critical point is that the spanning clusters will have fractal
scaling properties. This provides a qualitative explanation for the non-trivial scaling of
the interfaces discussed in [13]. Moreover, the fractal dimension determined in [13] is also
different from the corresponding hull dimension of random percolation, providing additional
evidence for a new percolation universality class.

To summarize, we have defined a dynamical connectivity transition which is in a new
percolation universality class. The critical behaviour is robust and independent of the
microscopic details of the model, and the standard hyperscaling relation is seen to hold.
Our numerical results are, of course, subject to size limitations and it is not possible to
entirely rule out a return to the regular percolation universality class for sizes beyond the
scope of our investigation. However, the existence of a dynamically accessible critical point
and its connection to the fractal interfaces observed in [13] suggest that this is not the case.
It is also interesting that the replacement of first-order transitions by continuous ones due
to bond randomness in equilibrium symmetry-breaking transitions have an analogue in the
dynamical non-equilibrium transition that we have studied here.

We are grateful to INFN sez. di Trieste, NASA, NATO and the Center for Academic
Computing at Penn State for partial support of this work.
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